Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization

نویسندگان

  • Sandra Szabo
  • Karl L. Wögenstein
  • Christoph H. Österreicher
  • Nurdan Guldiken
  • Yu Chen
  • Carina Doler
  • Gerhard Wiche
  • Peter Boor
  • Johannes Haybaeck
  • Pavel Strnad
  • Peter Fuchs
چکیده

BACKGROUND & AIMS Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1(-/-)) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. METHODS Wild-type (WT) and Eppk1(-/-) mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. RESULTS Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1(-/-) mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1(-/-) hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1(-/-) primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. CONCLUSION Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress-induced recruitment of epiplakin to keratin networks increases their resistance to hyperphosphorylation-induced disruption.

Epiplakin is a large (>725 kDa) cytoskeletal protein exclusively expressed in epithelial tissues. It has a unique structure, consisting entirely of plakin repeat domains (PRDs), one of the hallmarks of spectraplakin protein family members. Previous studies, including the phenotypic analyses of knockout mice, failed to reveal the biological function of epiplakin. Using in vitro binding assays, w...

متن کامل

Epiplakin Deficiency Aggravates Murine Caerulein-Induced Acute Pancreatitis and Favors the Formation of Acinar Keratin Granules

Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/-) mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet kn...

متن کامل

Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks.

Epiplakin is a member of the plakin family with multiple copies of the plakin repeat domain (PRD). We studied the subcellular distribution and interactions of human epiplakin by immunostaining, overlay assays and RNAi knockdown. Epiplakin decorated the keratin intermediate filaments (IF) network and partially that of vimentin. In the binding assays, the repeat unit (PRD plus linker) showed stro...

متن کامل

Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity.

Keratin 18 (K18 or KRT18) undergoes caspase-mediated cleavage during apoptosis, the significance of which is poorly understood. Here, we mutated the two caspase-cleavage sites (D238E and D397E) in K18 (K18-DE), followed by transgenic overexpression of the resulting mutant. We found that K18-DE mice develop extensive Fas-mediated liver damage compared to wild-type mice overexpressing K18 (K18-WT...

متن کامل

Epiplakin accelerates the lateral organization of keratin filaments during wound healing.

BACKGROUND Epiplakin (EPPK) belongs to the plakin family of cytolinker proteins and, resembling other members of the plakin family such as BPAG1 (an autoantigen of bullous pemphigoid) and plectin, EPPK has plakin repeat domains (PRDs) that bind to intermediate filaments. Elimination of EPPK by gene targeting in mice resulted in the acceleration of keratinocyte migration during wound healing. EP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015